Small Business Innovation Research/Small Business Tech Transfer

Probabilistic Remaining Useful Life Prediction of Composite Aircraft Components, Phase II

Completed Technology Project (2012 - 2014)

Project Introduction

A Probabilistic Fatigue Damage Assessment Network (PFDAN) toolkit for Abaqus will be developed for probabilistic life management of a laminated composite structure with both microcracking induced stiffness degradation and cyclic loading induced delamination crack growth without remeshing. It is based on a high fidelity Fatique Damage Assessment Network (FDAN) which includes 1) a coupled continuum damage and discrete crack model for ply damage characterization; 2) a moment schema finite element coupled with XFEM for efficient crack growth simulation in a thin ply; 3) a mixed mode fatique delamination module to account for the mode mixity and failure mode interaction; and 4) an adaptive fracture process zone model for mesh independent delamination growth. A reduced-order model of FDAN will be generated using a combined response surface and a Gaussian process surrogate model builder to perform the subsequent probabilistic analysis efficiently. For the module verification and validation, experimental studies at the sub-component level will be performed along with the use of a damage monitoring and characterization system. The developed toolkit will be used to perform damage prognosis and risk informed life management using SHM data. GEM has secured commitments for technical support and commercialization assistance from Clarkson University, Sikorsky Aircraft, and Boeing.

Primary U.S. Work Locations and Key Partners

Probabilistic Remaining Useful Life Prediction of Composite Aircraft Components

Table of Contents

Project Introduction Primary U.S. Work Locations	1
and Key Partners	1
•	_
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Probabilistic Remaining Useful Life Prediction of Composite Aircraft Components, Phase II

Completed Technology Project (2012 - 2014)

Organizations Performing Work	Role	Туре	Location
Global Engineering and	Lead	Industry	East Lyme,
Materials, Inc	Organization		Connecticut
• Ames Research Center(ARC)	Supporting	NASA	Moffett Field,
	Organization	Center	California

Primary U.S. Work Locations		
California	Connecticut	

Project Transitions

0

May 2012: Project Start

May 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138426)

Images

Project Image

Probabilistic Remaining Useful Life Prediction of Composite Aircraft Components (https://techport.nasa.gov/imag e/134539)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Global Engineering and Materials, Inc

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

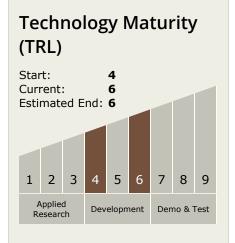
Carlos Torrez

Principal Investigator:

Yuanjie Lua

Co-Investigator:

Jim Lua



Small Business Innovation Research/Small Business Tech Transfer

Probabilistic Remaining Useful Life Prediction of Composite Aircraft Components, Phase II

Completed Technology Project (2012 - 2014)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.2 Structures
 - ─ TX12.2.4 Tests, Tools and Methods

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

